Data Migration Strategy Guide

Author: Jerry Bryan Infomig Ltd
Document Version: r1

Document Status: Release

Document Date: 19/06/2009

Contents

O O~ WN -

REVISION HISTOMY ..ottt e e et e e e enreeeeeanee 3
PUIPOSE @NA SCOPE.... .ttt e e e e e et e e e e e e e e eaabeaeeeas 3
EXECULIVE SUMMAIYooiiiiiii e e 4
INEFOAUCTION ... e s e e e e 5
S Tel o] o] o e FO PSPPSR 7
[F= o] T oo T RSP 9
Tt TR O 1Y o1 PR 9
6.2. Requirements Gathering ..o 9
6.3. Specification Creationuvviiiii i 10
6.4. Data Extract and CleanSingcooiuiiiiiiiiieiiiee e 10
6.5. Data Transform and LOadccccoiiiiiiiiiiii e 10
6.6. ACCEPIANCE TESHNG ... eeiiiiiiiii e 11
N S € T TN 1Y TS 11
SPECIHICALIONt e e e e e e e e e e e e e e e e e aaaanes 12
7.1. Requirements SpecifiCation ... 13
7.2. Design SPeCfiCatioN..........coii i 15
[g 0] (=1 g aT=T 0 ¢= 14T o S 17
8.1. Development ENVIFONMENT...........oiiiiiiiiiiiic e 17
8.2. Data Extraction and Cleansingccccveiiuiiieiiiiee e 18
8.2.1. DOMAIN CheCKiNG ...cooiiiiiiiiiiee e 19
8.2.2. Enforcing Integrity Constraints..........ccccoveiciiiiiii e 20
8.2.3. De-DUPICAtION ...oiiiieieee e 20
8.3. Data Transformation ..o 21
S TR Tt B |V =T o o o [P U PPRPRP 22
8.3.2. FIEIING ..t e et e e e e 22
R R TS 1= o == 1] o 1RSSR 22
8.3.4. COMDINING.....eeeiiiiiiiii ettt e e et e e e e abeeeeeaae 22
8.4, Data Loading.......ccocciiiiiiii ettt a e aaaeeaaannes 23
SRS T = 1] o PSPPSR 24
G TR TRt B 1= = 1 o 3 SRR 24
8.5.2. Data EXtract TeSHNGceiiiiiiiiiie e 24
8.5.3. Data Transformation TeStiNGcooiiiiiiiiiiiiie e 25
8.5.4. Data Load TeStNGcccuviiiiiee it 26
8.5.5. User Acceptance TeStiNg.......uuiii it 27

TG TR € To YN 1N 1Y = 29

Revision History

1 Revision History

Version | Author Date Changes Made
R1 Jerry Bryan 19/06/2009 First Release

2 Purpose and Scope

This document is intended to provide guidance to organisations who are
contemplating migrating information from existing database applications into a
new database application. It contains high-level planning and strategic guidance
rather than technical details, and as such is aimed at the implementation project
manager and the data migration manager.

Accompanying Microsoft Word and Microsoft Project documents are available
from Infomig which provide templates for the data migration implementation.
These are listed in the references at the end of this document.

Experience has shown that achieving a successful migration within the overall
time constraints of an implementation is difficult unless it is properly planned and
managed from the outset. This document seeks to make project manager aware
of the difficulties and provide recommendations which will enable the migration to
be completed on time, within budget and to the satisfaction of the users of the
information being migrated.

Executive Summary

Executive Summary

Decide at the outset of the project which applications currently hold the data
to be migrated and what data will be migrated from them.

Treat data migration as a subproject of the overall implementation and
proceed through the same phases and milestones.

Monitor the progress of each phase to ensure that enough time is left for
subsequent phases.

Make generous allowances in the project plan for data cleansing and testing.

Recognise the reporting issues that can be affected by data migration
choices.

Produce a requirements specification that is signed off by the user
representatives before starting the design specification.

Do not migrate data directly between databases. Produce logical data models
of the existing applications and the new application and use the requirements
specification to transform the data between those models. Build the business
rules of the application into the logical application model.

Perform the data extract and load between the physical and logical data
models to check for data quality.

Test each process separately and ensure that correct numbers of records are
being migrated at each stage.

Get users to perform acceptance testing of the migrated data, and allow for
three rounds of acceptance testing.

Plan for the switchover from the old applications to the new and decide how
to record new data that arrives during the switchover.

Introduction

4 Introduction

Database applications have been in common commercial use since the early
1980s'. They are used whenever a business needs to store and retrieve
information about its clients, its products, its suppliers and even its staff. Almost
every medium and large size organisation now has at least one database
application and these applications often hold information for the whole business.

These database applications have come to be relied upon to such an extent that
a computer system failure will halt the functioning of the business. Companies
now recognise how important database applications are, and put in place
elaborate and expensive disaster recovery systems and strategies to ensure that
the information that is vital to their business is always available.

Because of the rapidly improving technology for computers and changes in
business requirements the normal lifecycle for a database application is between
5 and 10 years. After this time the application’s ability to store, process and
retrieve data will not match the needs of the organisation or the technology on
which it operates will have become obsolete. The organisation will therefore be
required to implement a new database application.

What is usually not realised by companies when they replace a database
application is the distinction between information and data. Although the users
of an application ‘see’ their information in the way it is presented by the
application, that information actually exists independently of the application and
can be held in multiple applications or ‘moved’ from one application to another.
However the way in which the same information is held in different applications is
often different; data is the way in which information is held in a particular
database application

For example a client will have a nhame and an address. In one application the
client’s first and middle names are entered into one field on a screen and in
another they are entered into two separate fields. The information that each
application stores for the client’'s name is the same but the data that each stores
is different. Similarly in one application a client’'s address may be entered as 4 or
5 lines without any structure, whereas in another the building name, street
number, street name, town, county and postcode may all have to be entered into
separate fields. Again the address information held by each application is the
same but the address data is different. These examples are fairly trivial but the
relationship between information and data can be extremely complex.

This movement of information between database applications is usually referred
to as data migration, but | prefer to use the term information migration to
emphasise that there is much more involved than simply copying data from one
database to another. The choices are therefore to input the existing information
manually into the new application or to use electronic methods to extract the data
from the existing application and transform and load it into the new application.

"1 am referring here to applications built specifically to enter and retrieve information from a
database management system (DBMS), as opposed to applications which store and retrieve data
solely for use by that application.

Introduction

For a medium or large sized organisation the amount of information they hold will
prohibit manually entering it into a new application on the grounds of the
resource time and cost required. Therefore an electronic method will be required
which involves extracting the information from the existing application,
transforming it into the format required by the new application, and finally loading
it into the new application.

The Data Migration Process

geg:.;‘;; Mew System
Lil-l:ll:zlical | Tranefom Lagical
Model Mecel

Extract
Lwad

Legacy Systam Data Mew System Data

Figure 1: The Data Migration Process

These migration tasks are not usually trivial and so need to be scoped and
included in the implementation project plan from the outset. If there are
constraints on time and resource, as there usually will be, early decisions will
need to be made regarding which existing information should be migrated and
which should be left in its current format and location.

The remaining sections of this document will cover:
e Deciding which information should be migrated (scoping)
e Determining the resources and time required (planning)

e Mapping the information from the existing applications into the new
application (specification)

e Cleansing and extracting the data from the existing sources and transforming
and loading it into the new database (implementation).

5

Scoping

Scoping

Scoping and Planning Tasks

Legacy System 2 Legacy Systam 3

Cusality of Data

Cuality of Data

— = Cwtput from this phasa

Figure 2: Scoping and Planning Tasks

The first exercise that should be undertaken is to determine the sources of
existing data that could potentially be migrated into your new application. This
should take no more than 10% of the total time available for the implementation.

It is assumed that the person (generally the implementation project manager)
who undertakes this task has a reasonable understanding of the information that
can be held in the new application. The project manager should familiarise
themselves with the current functionality of this application and should obtain the
specification for any further functionality that is due to be included before the
application is implemented.

If the implementation is being done in a number of phases then it is usual for the
data to be migrated from existing applications in the same phases as the
implementation. For example if a finance module is being implemented in a later

Scoping

phase it is not generally sensible to try to migrate data for it during the first
phase. However consideration must be given at the outset to how data migrated
in a subsequent phase will be integrated with data migrated in an earlier phase.

Once the project manager knows which information will be used in each phase of
the implementation he or she should find out how that information is currently
being held. At this stage it is not necessary to go into detail of how the data is
held; the object of the exercise is to find out where it is being held and the
feasibility of migrating it into the new application.

For each application identified a decision should be taken as to which information
should be migrated from it and in which implementation phase it should be
migrated. Factors that should be taken into consideration include:

o What is the information currently being used for, and is this function to be
carried out in the new application?

e Wil the existing application still be available and maintainable after the new
application has gone live?

e How much of the information is historic, and how much of that historic
information is still required to be held?

¢ What is the quality of the data and will it be possible to cleanse it?

e Could the data be manually entered into the new application and how long
would this take?

o Is the same information duplicated in another application, and if so which
application will be the primary source for data migration?

o Does the information in the application get transferred into or out from any
other applications?

e Does the information get used for producing statutory reports or management
information?

A scoping document should be produced which collects these decisions together
into a Data Migration Strategy.

This document should be reviewed and signed off by all interested parties,
especially representatives of the users of the existing applications. The decisions
made in this document are vital in determining the project plan for migration and
ensuring that time and resources are focussed in the correct areas. It will also
ensure that there are no last minute requests by users for ‘their data to be
included in the migration.

Planning

6 Planning

6.1. Overview

Once the decision has been taken as to which information should be migrated
the new application and when the next step should be to identify the resources
that will be required and to estimate the time that the process will take. This
information should be pulled together in a data migration implementation plan.
Infomig can supply a sample data migration implementation plan' and project
template"

The data migration process can be considered as a sub-project of the full
implementation project, and it should proceed through the normal project phases
and be subject to the same milestones as the rest of the project. At each
milestone the risks and assumptions can be reviewed. The outcomes of these
reviews should feed back into the project plan and may result in a change to the
scope of the data migration. For example it may become apparent that the quality
of the data from a particular source is too poor to justify the effort required to

clean it.
Typical Migration Timeline
050172008 - 25012009 ZR02/2008 - 250353000 052008 - 1T/062009 030008 - 11082009
Scoping Phase Data Mapping Specdfication Phase Data Transformation and Load Phase Go Live Phass

f— —— — »

DAOTIZONG O4/DR

of02/2008 OIPAZO08 004008 0152 01062003]
N 2009 1NE2009
28012009 - 2402/2009 2ENE2000 - DENS2009 17/06/2009 - 02082000
Requrements Specification Phase Data Extract & Cleansing Phase Acceptance Testing Phase

Figure 3: Typical Data Migration Timeline

6.2. Requirements Gathering

The first phase of the process will be to specify in detail which information will be
taken from each of the existing applications and where it should appear in the
new application. This should be a fairly high-level document written in business
terms and aimed at the department managers. Its author would normally be a
business analyst who has an understanding of the source applications and the
new application. This information could be collected as part of the overall
business process mapping exercise that will be carried out to determine how the
new application will be implemented. The time required to produce this document
will depend on the number of separate data sources and the amount of
information in each, and would normally be expected to take around 15% of the
total time available.

Planning

6.3. Specification Creation

The next phase will to be to draw up a technical specification of how the data in
the current applications will be migrated into the new application. This document
will be used by the people who will carry out the data migration. It will be
produced by a database analyst / system designer who understands how data is
held in the source databases. At this point a decision should also be taken
regarding the development environment for the migration. The considerations for
this decision are covered in the implementation section of this document. This
phase will normally take around 15% of the total time available.

6.4. Data Extract and Cleansing

The creation of the technical specification should indicate the likely areas for data
cleansing. Data cleansing involves checking the quality of the data in the source
application and if necessary altering it so that it conforms to the intrinsic data
integrity requirements of the new application. It may also be necessary to remove
duplicate data and ensure data matches across the separate sources that are
being used for migration. This work will normally involve users who have a good
understanding of the data in the source applications and the ‘real-world’
knowledge of how that data is obtained.

The data cleansing work will normally be done in parallel with the development of
the data extraction scripts. These will usually be a combination of database
queries and program scripts to extract the data into a logical model of the legacy
application, plus a further set of queries and scripts to test the data. These can
be written by programmers who are familiar with the legacy database. A data
migration tool may be used to automate this development.

The writing of the data extraction scripts is unlikely to take very long, but the
testing of these scripts is likely to uncover further problems with the quality of the
source data. It may therefore require a large number of iterations of the testing
and refinement of the scripts and / or the data before this phase is completed.
Around 20% of the total project time should be allowed for this phase.

6.5. Data Transform and Load

Once the extract scripts and source data have been tested against the design
specification the data can be transformed and loaded into a target database,
which should be a copy of the new application database which has been
configured in its go-live state. The supplier of the new application may provide
routines and support to help achieve this. This exercise may throw up problems
with the format or integrity of the data which were overlooked at the design
phase. In particular if the data is being obtained from a number of separate
sources problems with duplicate or mismatched data may only be identified at
this stage. The exercise may also bring to light problems with matching the
migrated data to the database configuration. This process can be carried out by a
database analyst. Around 20% of the total project time should be allowed for
identifying and correcting problems with the data or configuration.

Planning

6.6. Acceptance Testing

When the data is successfully loaded into the new application it should undergo a
period of acceptance testing by the users. Acceptance test plans should be
written by a business analyst and / or experienced users of the existing
applications. Acceptance testing will require the involvement of user
representatives from each of the teams and job roles that will be using the new
application. It will normally take place at the same time as the user acceptance
testing of the functionality of the new application, but it can be done as a
separate exercise once the application has been tested with ‘new’ (i.e. manually
entered) data. At least 3 iterations of acceptance testing should be allowed; the
first should identify any high level issues, the second should identify lower level
problems that may have been overlooked during the first iteration, and the third
should confirm that all the issues have been resolved. In total this period should
account for around 20% of the total project time.

6.7. Go Live

Finally the steps required for the switch from the current applications to the new
application should be planned. A period of time will need to be allowed between
the time the old applications are ‘switched-off’ (i.e. no longer used for input) and
the time that users can start to use the new application in the live environment.
This time will typically range from a couple of days to a week. During this period
of time the ‘final cut’ of the current data needs to be extracted, checked and
loaded into the new application. There are also likely to be a number of
operations to be carried out on the migrated data before it can be used — such as
setting up access rights for the system users. Consideration will need to given as
to how any data collected in this period will be retrospectively entered into the
new application and who will do this task.

When deciding on the go-live date for the new application consideration should
be given to the potential issues around reporting on migrated and retrospectively
entered data. This data will not necessarily conform to the rules that apply to ‘live’
data, either because of the difficulties in translating data between the applications
or because the start and end dates of pieces of work cannot be correctly
recorded. Hence reports that assume these rules do apply may not give the
expected results. If possible the go-live date should be set to the start of a
reporting period. If this is not possible then it may be necessary to enter some
data in both the existing and new applications in order to produce consistent
reports.

Specification

Specification

It is recommended that two separate specifications are written as there are two
target audiences that need to be informed of how the data will be migrated. The
first audience are the users of the existing and new applications. These people
will need to be told how the information that they have in their current
applications will appear in the new application. The second audience are the
technical staff who will be extracting the data from the existing databases. These
people will need to be told where the information that is required for the new
application is to be taken from and what format it should be exported in.

71.

Specification

Requirements Specification

Requirements Specification Tasks

Drata Migration
Implamantaiion Plan MNew System

Lagﬁc‘_u.lfyatam In Scops?
Y v
Legacy Systam T F e tMaplnfnnnaﬂnn I‘.u]
| _@. | " * i syﬁtﬂm
1
%

F
Legacy Sysism @
H . ¥

Dt of Scopa

= Qutpul from this phase

Map nformathon 1o
W Sy ETEm

. H

Figure 4: Requirements Specification Tasks

This specification is written for the application users. Its purpose is to inform the
users of the information that is, and isn’t, being migrated and obtain their
agreement for this. It should be written from the perspective of a user of the
current application (i.e. the source of the information). One possible format for
the specification is to take each of the screens in the current application and
show — with screenshots if possible — where the data that currently appears on
that screen will appear in the new application.

Specification

The specification should explain both what data is being migrated and where it is
being migrated to. The decision as to what data will be migrated from a particular
application will be driven by the same considerations as were used to decide
which applications should be included in the migration at the scoping phase.

To arrive at this decision the business analyst should interview the users of the
current application, including the people who may use it to produce statutory
reports and management information.

It may be decided that only a subset of a particular type of information in the
current application will be migrated. For example if the existing application
contains many clients who are no longer being provided with services then a
decision could be taken to only migrate those clients who have been provided
with a service within the last five years. The justification for doing this will be to
reduce the amount of data cleansing required and to ensure that data held in the
new application conforms to data protection guidelines regarding retention of
client data.

The decision as to what data will be migrated will also be influenced by where it
will appear in the new application. If there is no screen or field that directly
corresponds to that in the existing application then the data may be able to be
put into a ‘notes’ field or into a user configurable screen or field within the new
application. Alternatively it may be able to be attached as a part of a document or
it may be left out of the migration completely. Where complex data could be
migrated in a number of different ways it may be necessary to carry out a
feasibility study of the different options involving trial migrations of sample data.

If there is some data in the current application which cannot or should not be
migrated to the new application then an option is to extract it to an archive of
some sort. This option should only be used if it will not be practical for users to
access the old applications after the new application goes live as the
establishment of a separate data archive will involve extra development effort.

Specification

7.2. Design Specification
Design Specification Tasks

Map lo Logical
Made! from
Database

Legacy Systam 1
Database

"1-_-___-_._.-'-

Legacy Syslem 2
Databaze

Map to Logical
Maodel from
Databaga

Drata Migration
Requiramsants
Specification

Transform Logical
Models

&

- Map from Logical
—— Madal to
Meaw System BT
Diatabase Mew Systam

Logical Madel

- = Dutput from this phase

Figure 5: Design Specification Tasks

This specification is written for the technical staff who will be extracting the data
and checking the data quality. The specification will take the decisions made in
the requirements specification and translate them into the operations that will
enable the data in the source database to be extracted, transformed and loaded
into the target database.

It can sometimes be difficult to understand how information is held in a database
purely by examining the tables in the database. These tables will have been
designed to support the physical requirements of the application for storing and
retrieving data, which are not always the same as for a human being to process
that information. It is therefore recommended that logical models are created of
the information to be migrated, much in the same way as management

Specification

information reporting tools will present the information for users to query or write
reports from. A logical model should be created for each of the source
applications and for the target application.

These logical models can be created using applications that support data
modelling such as Microsoft Visio. If you are using a tool for data migration it may
well have a visual interface that will allow you to create the models directly in the
tool. In this case the design specification can include diagrams of the models
taken from the migration tool.

The design specification should also describe how the physical data from the
source databases will be extracted into the logical models of those databases,
how the data in the logical models of the source databases will be transformed
into the logical model of the target database, and finally how the data from the
logical model of the target database will be loaded into that database. Each of
these should be presented from the perspective of the receiving environment, i.e.
the extract should show how the logical model of the source database is
populated from the physical database, the transformation should show how the
logical model of the target database is populated from the logical model of the
source database, and the load should show how the physical target database is
populated from its logical model. The specification should provide enough
information for the users of the tools to create the migration scripts and to be able
to test that they are meeting the requirements.

The logical models of the source databases need only contain the scope of
information that has been included in the requirements specification. For
example if the old application contains health information about a client but the
new application does not support the maintenance of this information then the
health information should not be part of the logical model. To include this would
be a waste of effort because that information will not be part of the
transformation.

Where the requirements specify that a subset of a particular type of information
should be migrated (e.g. clients who have received a service in the current year)
this selection can either be done in the transformation process or in the extract
process. The advantage of carrying out the selection in the extract process is that
it will reduce the number of records that need to be manipulated and avoid the
need for the transformation process to have to deal with records that are not
required in the source database. For example if the requirements state that only
current records need to be migrated then obsolete types of information will not
need to be dealt with in the transformation. The disadvantage of carrying out the
selection in the extract process is that it can complicate the validation required to
ensure that the correct number of records have been extracted, especially if the
criteria are complex and do not relate directly to data held in the source
database.

The logical models should not contain codes for information that are dependent
upon the set up or configuration of the physical database. The models should
hold information in the manner in which it is presented to the user. This will allow
the transformation to be determined from the requirements specification. The
translation of codes to descriptions and vice versa should be done as part of the
extract and load mappings.

Implementation

8 Implementation

8.1. Development Environment

You will need an environment in which to develop and run the processes to
extract, transform and load the migrated data.

This environment should have the following:

e connections to the database containing the data to be extracted;

e a means of creating the logical models of the source and target databases;
e a means of manipulating data;

e connections to the database in to which the data will be loaded.

A simple tool that meets these requirements is Microsoft Access. You can use
the ODBC facilities within Access to connect to external databases of most types.

If both your source and target databases run on the same platform then you can
use specialist client development tools for that platform, such as Management
Studio for Microsoft SQL Server or SQL Developer for Oracle.

There are also specialised data migration tools available such as:
e Trillium
o Centerprise Data Integrator

e Talend Open Studio

8.2.

Implementation

Data Extraction and Cleansing

Data Extraction and Cleansing

Crata Migration Dasign
Specihicatian

TestFian Legacy Systam
Data Model

Extract
Test Exlract
'. Q
¥
Transform
atian

Figure 6: Data Extraction & Cleansing Tasks

Data extraction is the process of retrieving the data from the source database
into a logical model of the source application. This is usually done by writing SQL
Select queries on the source database tables or using a migration tool that allows
you to specify what data should be extracted.

The data extract process should ensure that the data held in the logical model
obeys the business rules of the source application. This should be done where
possible by applying constraints to the logical model. Where this is not possible
the business rules can be checked for in the extract scripts.

Implementation

Where the data does not meet the business rules criteria it will need to be
cleansed. Data cleansing comprises the following main operations described in
the sections below:

e Domain checking
e Enforcing integrity constraints
e De-duplication

Data cleansing can either be carried out directly in the source database, in the
data migration scripts, or by manipulating the extracted data. The pros and cons
of each approach are listed in the table below.

Cleansing
Approach

Pros

Cons

In source database

Only needs to be done once

Allows users to determine correct
values in each individual case

May not be able to be done in
source application

Requires co-operation of users

In data migration
scripts

Is done automatically
Does not affect source application
Does not rely on user co-operation

Does not allow for consideration of
individual cases

Manipulating
extracted data

Does not affect source application
Allows for consideration of

Has to be done on each data
extract

individual cases
Does not rely on user co-operation

Relies on knowledge of extracted
data which only users may possess

Prone to errors

Table 1: Comparison of Data Cleansing Approaches

8.2.1.

Domain checking involves checking that the values in a particular field or column
in a database fall within the range of allowed values. |deally constraints should
be placed on the columns to ensure this but this may not have been done, either
because the database designer was not aware of the limitations on the values or
because it was not possible to do this in the DBMS.

Domain Checking

Examples of common domain checks are given below:

e Checking that a text field that is used to indicate whether or not a record has
a property is Y’ or ‘N’;
e Checking that a numeric field that is used for the same purpose is 0 or 1;

e Checking that a text field that is used to indicate the state of a record only has
the allowed state values;

¢ Checking that a date field only contains a date range that is valid within the
application, e.g. a field used for date of birth should not be more than 120
years in the past or a future date;

e Checking that an account reference, post code or telephone number has a
valid combination of numeric and alphabetic characters.

Implementation

8.2.2. Enforcing Integrity Constraints

Enforcing integrity constraints involves checking values which should match
across different records or rows in the database. This can often be enforced
within the DBMS but again there may be reasons why the database designer
was unable to do this. Some examples are:

¢ Checking that a client identifier in a transaction record corresponds to an
identifier of a client record;

o Checking that an invoice header record has at least one invoice line
associated with it;

o Checking that a total figure in an invoice header record matches the sum of
the corresponding figures in the records which are part of that invoice;

e Checking that a date for an account transaction falls within the range of
dates for which the account was open.

8.2.3. De-Duplication

De-duplication involves checking for and removing records where more than one
record or row in a database has been used to hold information for the same
entity.

In many database tables there is no natural primary key which can be used to
uniquely identify an entity; for example a person may be given a unique identifier
within an application, but another user may not realise that the person has
already been recorded and create a second record with a different unique
identifier for the same person.

Checks should therefore be made on the key fields within a record to identify
where there are duplicate values for those fields across more than one record,
and only one of the duplicate records should be extracted. In some cases it may
be valid to have duplicate values — for example in a database containing a large
number of people there may be some with the same name and date of birth — so
some manual checking may be required before records are deleted.

Where the records contain identical information it is straightforward to just extract
a single record by specifying that only distinct records should be extracted;
however if some of the information is different then this information may need to
be merged.

8.3.

Implementation

Data Transformation

Data Transformation

=

Data Migration Deslgn Legacy Byslam
Spacification

Data Modal

v
Comact
Transform Data F-(

w

—

Test Flan Mew Application
Data Model

Y
e Test ransformation
1 Transformation Comact

- = Jutput from this phase

Y

Figure 7: Data Transformation Tasks

Data transformation is the process of transforming the data in the logical models
of the source applications into the logical model of the target application.

During this process the data in the source model must be manipulated into the
target model whilst ensuring that the business rules of the target application are
adhered to and as little information is lost as possible. Remember that the
transformation process should only carry out operations specified in the data

Implementation

migration requirements. Data that is hidden from the user should only be used or
created during the extract and load processes.

The main operations used in the transformation process are mapping, filtering,
separating and combining.

8.3.1. Mapping

The contents of a table column in the target model will usually be taken from a
corresponding column in the source model. Where the data is mandatory in the
target model but there is no corresponding data in the source model a default
value should be used. For example the target model may require a start date for
an address where none exists in the source model. In this case either the current
date or a ‘dummy’ date such as 1% January 1900 could be used.

Where possible you should use the same column names and domains in the
logical models of both the source and target applications where you intend the
same information to be held in each. For example if both applications hold
information about a person’s ethnicity then call the column where this information
is held in each model ‘Ethnicity’ and allow the same range of values in each. If
the coding of ethnicity is different in the source and target applications then
translate the values during the extract and/or load phases.

8.3.2. Filtering

The migration requirements may specify that only a subset of the information in
the existing application is required in the new application. In this case filters (or
SQL ‘where’ clauses) should be applied to the source model to restrict the data
copied to the target model. For example information that is more than 5 years old
may not be required in the new application, and so a filter which checks a column
holding the date of the information against the current date will be required.
Ensure that the criteria that determines how the data is filtered is specified in
terms of the logical model so that it can be verified during user acceptance
testing.

8.3.3. Separating

Information held in one place in the source model may be held in different places
in the source model. In this case the data from a single row or column in the
source model should be separated into multiple rows or columns in the target
model. For example a person’s address may have been stored with the person’s
details in the source model, whereas the target model will allow multiple
addresses for a person and so stores addresses in a different table.

8.3.4. Combining

Conversely information held in separate places in the source model, or in more
than one source model, may need to be combined into a single place in the
target model. For example the services being delivered to a client may currently
be held in different service type tables or databases but should be combined into
a single service table in the target model.

Where data needs to be combined from different source models extra effort will
be required to ensure that the data matches, i.e. a common means of identifying

Implementation

who or what the information belongs to on each application will need to be found.
This often involves the manual addition of reference numbers to one or other of
the source applications with the attendant risks that involves. For that reason
combining data from different models should be avoided, and where it is

essential extra time should be allowed when estimating the resource
requirements for the implementation and testing phases.
8.4. Data Loading
Data Load
- ol P
h
Load Data '.. @ CD%"“':M“
v
Tast Plan onfiguratio
Mew System Problem
[latabass

oo Test Load

Load Comact

- = Culdput froam This phiase

Correct Extrac

Figure 8: Data Load Tasks

Implementation

Data loading is the process of moving the information in the logical model of the
target application into the physical database tables. This is usually achieved by
writing SQL Insert or Update scripts.

To enable this to be done successfully you must have a thorough understanding
of how the application stores data in the physical database. Where possible you
should use tools or documentation developed by the manufacturers of the target
database application. If the application uses an API (Application Program
Interface) to store data in the database then you should use this too, except in
cases where this significantly slows down the performance of the data load.

Where these tools and documentation are not available you should experiment
with entering data into the application through the user interface to determine
how that data is stored in the physical database. Note that this exercise can also
be helpful in determining the business rules of the application.

The data load scripts will map rows and columns in the logical database to the
physical database and translate logical values into the physical codes used to
represent them. Because different copies of a database could use different codes
to represent the same logical value the data load scripts should use look-up
tables to translate logical values to physical codes. These tables should be
checked against the configuration before loading. Including a description of the
information being translated will help identify any problems with mismatched
codes.

8.5. Testing
8.5.1. Test Plans

All data testing should be planned. A test plan should be created for each set of
tests to be done which lists the tests that need to be carried out on that data.

The test results can either be recorded on the test plan or on a separate test log.
The test results should include:

o The purpose of the test

e The date and time it took place

e Who carried out the test

o What the expected results of the test were

¢ What the actual results of the test were

8.5.2. Data Extract Testing
The purpose of data extract testing is to ensure that:

a) The correct number of records are extracted into the logical data model of the
source application;

b) All the records in the logical data model conform to the business rules of that
model.

The criteria specifying the records that should be extracted into the logical data
model should be simple enough to allow reports that already exist (or are simple

Implementation

to create) within the source application to be used to verify the number of records
extracted.

The business rules of the logical model can be used to determine the number of
records that should be extracted; for example if the rules state that each person
should have one and only one address then the number of address records
extracted should equal the number of person records extracted.

Discrepancies between the expected and actual number of records extracted will
usually indicate that data cleansing needs to be done on the source data; if not
then the extract criteria are probably too complicated. The testing to ensure that
the extracted data conforms to the business rules of the application will verify that
the data cleansing has been done successfully.

8.5.3. Data Transformation Testing
The purpose of data transformation testing is to ensure that:

a) The correct number of records are inserted into the logical data model of the
target application;

b) All the records in the logical data model conform to the business rules of that
model;

c) The field level transformations between the target and source models have
been carried out according to the requirements specification.

The criteria in the requirements specification for filtering, separating and
combining records should allow simple queries to be written comparing the
numbers of records in the source and target logical models.

The business rules can often be checked by applying constraints to the target
logical data model. Records that do not conform to the rules should be trapped
by error handling routines with the transformation process and will show up as
discrepancies between the number of records that should be in the data model
and the number that are.

Where this is not possible representative samples of the data should be checked
manually or by a simple script. If a rule states that a record should have one
value or another value then a good check is that there are no records with neither
value, i.e. if A=X or A=Y must be true then check that A <> X and A<> Y is
always false.

Sometimes counting the records in the logical model can identify when a
business rule has been broken. For example if each person should have one and
only one main address then the number of main addresses in the database
should equal the number of people.

Field level transformations will usually need to be checked manually by
comparing representative samples from the source and target models.

Implementation

8.5.4. Data Load Testing
The purpose of data load testing is to ensure that:

a) The correct number of records are written into the physical database of the
target application;

b) The data written matches the configuration of the physical database;

c) The data written to the physical database can be correctly handled by the
application.

The design specification should state how the records in the logical model of the
database are written to the physical model and the data load testing will be used
to verify that this design has been correctly implemented by comparing the actual
numbers of records in the physical database to the expected numbers.
Discrepancies in these numbers will imply either that the implementation has not
interpreted the design correctly, or that records have been rejected by the
physical database because it has not been configured as expected. For example
if you are migrating cost codes associated with a purchase of a service the
configuration of the new application may not have been set up to allow those
codes. This could indicate that the configuration is invalid, that your cost code
transformation is invalid, or that invalid information exists in the source database.

The final possibility given above is particularly difficult to deal with. You could
build the check into the business rules for the logical data model of the source
application, however the information may conform to the rules of the application
itself (which may not check cost codes) in spite of being invalid in the ‘real world’.
Alternatively you could deal with it in the transformation process if the rule it falls
foul of can be stated independently of the configuration of the new application.
Note that if you assume that the configuration is correct then you should not deal
with the problem as part of the load process because the information itself is
wrong, not just the physical data it is being translated into.

A test script should be written to verify that the user interface and functionality of
the application works correctly with migrated data. This test script should be
based on data held in the logical model — which should be a representation of
how that information is presented in the application. Therefore the assumption
should be that data stored in the logical model will behave in the same way in the
application as data entered through the user interface of the application. Note
that if you are using a API provided by the supplier of the application it should
only be necessary to carry out application testing to demonstrate that you are
using the API correctly (and that it has been written correctly!).

Implementation

8.5.5. User Acceptance Testing

User Acceptance Testing

Extract,
Transform & i gﬁ'ﬂrﬁgﬁ;r Rewige
Load Data Requirements

Create Test Plan:

L 4

Craala Tasl
Scrpls

———————
Populated
Database

Revisae Scrpts

= Cuitput from this
phase

Figure 9: User Acceptance Testing Tasks

The tests described in the previous sections are designed to confirm that the
design specification has been implemented correctly and that it has correctly
interpreted the requirements specification.

User acceptance testing is used to confirm that the requirements specification
has correctly identified the needs of the users for migrated data to support their
business processes.

Implementation

Acceptance testing is best achieved by writing a set of scripts that can be
followed by the users of the application. For this reason the acceptance test
scripts should not be written by members of the data migration team, they should
be written by user representatives who have used the existing database
application and who are familiar with the new application.

An acceptance test script should be written for each use case (i.e. function
carried out by a particular type of user). The use cases should have been
identified during the implementation of the new application itself and should
already have been tested with new data entered directly into the application. The
writers of the acceptance scripts should be familiar with the decisions made by
the project board at the scoping phase of the migration so that they do not test
for data that was never intended to be migrated (e.g. if a business decision was
made to exclude closed cases then test scripts should not be written which
assume that information for closed cases will be available).

If the extract, transform and load tests have been done properly then any
problems reported during acceptance testing will indicate either that the
requirements specification requires changing or that the test scripts have not
interpreted it correctly. In the former case it may be that the requirements
specification overlooked particular issues or has interpreted users’ needs
incorrectly. The project manager should make a judgement on the impact of
changing the requirements specification in terms of the time and resource
required to alter the design specification, migration scripts and test plan weighed
against the problems reported. If it would be necessary to put back the go live
date then the impact on the business of doing this needs to be measured against
impact of leaving the migrated data as it is. In some cases it may be possible to
put a workaround in place and / or alter the migrated data after go live.

If it is decided that the requirements specification does not need to change then
the test scripts should be altered to take into account the issues raised so that
there is a record that the problems identified have been considered.

8.6.

Go Live

Implementation

Pre-Load Canflguration
Flan

FPosl-Load Configuratian
Plan

Go Live

Empty Mew Application
Database

> Pra-Load
Configuration

Configured MNew
Spplication Dalabasa

e

-

I‘‘l‘-"""i—-_n—"'-'-".‘I
Loaded Mew
Application Database

Post Laad

Caonfigueation

h J

Manual & Back
Data Load

_—

Final Mew Application
Cratabasze

Froeaza Lagacy
Diatasst

Figure 10: Go Live Tasks

Implementation

Once the migrated data has passed the acceptance tests plans can be made for
the final data migration which will populate the live database. The following steps
should be included in this plan:

¢ ‘Freezing’ the applications from which the data is being migrated

e Extracting and checking the data from the old applications

e Transforming the extracted data

e Configuring the live database

e Loading the migrated data into the configured database

e Carrying out any application configuration that relies upon the migrated data
e Manually entering data that is not being migrated

e Back-loading data that has arrived after the old applications were frozen

Users will need to be informed well in advance as to when their existing
applications will be ‘frozen’. This is the point at which the final data extract will be
taken from those applications. It does not necessarily mean that they will no
longer be able to use those applications, but any data that is entered from this
point onwards will not be migrated and will have to be manually entered into the
new application. A copy must be taken of all the old application data at the point
at which the application was frozen and the data extracts should take place from
this copy. (An alternative would be to make the ‘live’ copy read only and allow
data entry into a copy of the application data).

Although the data extract scripts will have been tested it is possible that bad or
unexpected data could have been entered into the old applications since the
testing was carried out. It is therefore necessary to check the final extract and
allow some time for possible corrections to be made to it. Note that the
corrections must be made to the frozen copy of the data that was used to take
the data extract from.

If the live application database is not the same as that which was used for
migration testing then the data load files will need to be altered so that they load
the data to the live database. If this is the case a dress rehearsal of this process
should be carried out prior to the final data load to uncover any potential
problems. An alternative approach is to perform the go-live migration into the
same migration database as has been used for testing and then copy that to the
live database as the final step of the process. The latter approach is
recommended when migrating data into a database that is already in use (e.qg.
during phase 2 of an implementation).

If there are any configuration tasks that rely on migrated data, e.g. specifying
security rights for application users where the user details are migrated from an
existing application, these tasks will have to be carried our after the data has
been loaded but before the go live date. It may also have been decided that is
easier to load some data manually than to create extract files for it, and this data
may also rely upon migrated data being present.

The total amount of time required for all these go live actions may be more than
is available in non-working time (e.g. over a weekend), and so consideration may
need to be given as to how to enter the data into the new application that has

Implementation

arrived between the date on which the old applications were frozen and the date
at which manual input into the new application can commence.

' Infomig Data Migration Implementation Plan (MS Word document)

" Generic Infomig Data Migration Project Plan (MS Project document)

